A numerical method for nonlinear eigenvalue problems using contour integrals
نویسندگان
چکیده
منابع مشابه
Nonlinear eigenvalue problems and contour integrals
Beyn’s algorithm for solving nonlinear eigenvalue problems is given a new interpretation and a variant is designed in which the required information is extracted via the canonical polyadic decomposition of a Hankel tensor. A numerical example shows that the choice of the filter function is very important, particularly with respect to where it is positioned in the complex plane.
متن کاملA numerical method for polynomial eigenvalue problems using contour integral
We propose a numerical method using contour integral to solve polynomial eigenvalue problems (PEPs). The method finds eigenvalues contained in a certain domain which is defined by a surrounding integral path. By evaluating the contour integral numerically along the path, the method reduces the original PEP into a small generalized eigenvalue problem, which has the identical eigenvalues in the d...
متن کاملAn Arnoldi Method for Nonlinear Eigenvalue Problems
For the nonlinear eigenvalue problem T (λ)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem gover...
متن کاملNumerical Analysis of Nonlinear Eigenvalue Problems
We provide a priori error estimates for variational approximations of the ground state eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div(A∇u) + V u + f(u)u = λu, ‖u‖L2 = 1. We focus in particular on the Fourier spectral approximation (for periodic problems) and on the P1 and P2 finite-element discretizations. Denoting by (uδ, λδ) a variational approximation o...
متن کاملSolving Nonlinear Eigenvalue Problems Using A Variant of Newton Method
In this paper, iterative algorithms for finding approximations to the eigenvalues of nonlinear algebraic eigenvalue problems are examined. These algorithms use an efficient numerical procedure for calculating the first and second derivatives of the determinant of the problem. Computational aspects of this procedure as applied to finding all the eigenvalues from a given complex-plane domain in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JSIAM Letters
سال: 2009
ISSN: 1883-0609,1883-0617
DOI: 10.14495/jsiaml.1.52